
1

XML: Advanced GuideXML: Advanced Guide

Holly A. Hyland, FSA
Andrew Smalera, XML Framework

Session 14Session 14



2

AgendaAgenda

Objectives
What is the XML Framework at FSA?
XML Usage at FSA
XML Usage in the Community
XML Schema Design Best Practices
XML Supporting Technologies
– XML Development Tools
– XML Parsers
– XSLT, XQuery, XLink, and XPath

References
Questions



3

ObjectivesObjectives

Provide an overview of the FSA XML Framework.
Provide an update on XML Usage at FSA and within 
the Community
Present XML Schema Design Patterns.
Present information on XML supporting technologies 
including:
– Development Tools
– XML Parsers
– XSLT, XQuery, XPath, and XLink

Provide a list of references for additional research.



4

What is the FSA XML What is the FSA XML 
Framework?Framework?

This session provides an overview of the 
current status of XML usage within the 
Financial Aid Community and some 
advanced topics relevant to implementing 
and taking advantage of some XML’s 
benefits.



5

XML Usage at FSAXML Usage at FSA

Expanded use of XML by FSA
– More schools and software vendors are 

moving to being COD Full Participants.
– EdExpress is incorporating XML support.
– The CPS ISIR will be implemented as an 

XML Schema for the 05-06 Award Year.



6

XML Usage in the CommunityXML Usage in the Community

Expanded use of XML by the Financial 
Aid Community
– The Common Record: CommonLine XML 

Schema has been drafted and is in the 
process of being implemented.

– The Postsecondary Academic Transcript 
has been drafted as an XML Schema.

– METEOR and ELM are using and 
providing support for XML.



7

XML Schema Design Best PracticesXML Schema Design Best Practices

Overview
Russian Doll Design
Salami Slice Design
Venetian Blind Design



8

XML Schema Design Best Practices: XML Schema Design Best Practices: 
OverviewOverview

While FSA and the Financial Aid Community have developed a 
number of XML Schemas that are in use today, individual 
schools and vendors may find a use for developing their own 
schemas for internal data exchange and processing.
XML Schema Design Best Practices provides information on the 
three design patterns commonly used to create XML Schemas.
Each design pattern has its own pros and cons and may be 
used depending on the situation.
An understanding of these different design patterns will be 
helpful for schools and vendors to provide feedback on future 
Schema development efforts by FSA and the Community.



9

XML Schema Design Best Practices: XML Schema Design Best Practices: 
Russian Doll DesignRussian Doll Design

The Russian Doll Design defines objects in local 
scope.
Elements created using this methodology will 
have Schemas that are very similar to the 
instance documents.
– Limits the reusability of Schema designs.

Facilitates hiding namespaces. 
– Can prevent namespace issues like name collisions.



10

Example Russian Doll Design Example Russian Doll Design 
Schema SnippetSchema Snippet

<xsd:element name="Movie"> 
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Director" type="xsd:string"/>
<xsd:element name="Genre" type="xsd:string"/>
<xsd:element name="ReleaseYear" type="xsd:gYear"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>



11

XML Schema Design Best Practices: XML Schema Design Best Practices: 
Salami Slice DesignSalami Slice Design

The Salami Slice Design defines all objects in the 
global scope.
Elements created using this methodology make 
object reuse very easy.
Mapping between the Schema and an instance 
document will not be as straight forward.  
– It should be noted that this limitation does not carry over to 

automated validation of instance documents against 
Schemas.

Allows the reuse of elements so that Schema 
designers must be cognizant of possible namespace 
issues like name collisions.



12

Example Salami Slice Design Example Salami Slice Design 
Schema SnippetSchema Snippet

<xsd:element name="Movie"> 
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Title"/>
<xsd:element ref="Director"/>
<xsd:element ref="Genre"/>
<xsd:element ref="ReleaseYear"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Director" type="xsd:string"/>
<xsd:element name="Genre" type="xsd:string"/>
<xsd:element name="ReleaseYear" type="xsd:gYear"/>



13

XML Schema Design Best XML Schema Design Best 
Practices: Venetian Blind DesignPractices: Venetian Blind Design

The Venetian Blind Design leverages the 
design advantages of both the Russian Doll 
and Salami Slice Designs.
Facilitates reuse while also hiding 
namespace complexities (by creating type 
definitions).
Instead of actually creating elements and 
referencing them, a Schema designer would 
create a type, and reference that when 
creating their elements.



14

Example Venetian Blind Design Example Venetian Blind Design 
Schema SnippetSchema Snippet

<xsd:simpleType name="TitleType">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>
<xsd:simpleType name="DirectorType">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="GenreType">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="ReleaseYearType">

<xsd:restriction base="xsd:gYear"/>
</xsd:simpleType>
<xsd:complexType name="MovieType">
<xsd:sequence>

<xsd:element name="Title" type="TitleType"/>
<xsd:element name="Director" type="DirectorType"/>
<xsd:element name="Genre" type="GenreType"/>
<xsd:element name="ReleaseYear" type="ReleaseYearType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="Movie" type="MovieType"/>



15

XML Supporting TechnologiesXML Supporting Technologies

Development Tools
XML Java Parsers
XSLT
XQuery
XPath
XLink



16

XML Supporting Technologies: XML Supporting Technologies: 
Development ToolsDevelopment Tools

There are many categories of tools and many different tools 
available to support XML development.  The following are 
representative Integrated Development Environment (IDE) tools:

Sonic Stylus Studio provides support for authoring XQuery, 
XSLT stylesheets, XML schema, and related XML documents.  
Altova XMLSpy is an XML Development Environment that can 
be used for designing, editing, and implementing XML.  It 
provides a graphical view of schemas and instance documents.  
In addition, XMLSpy provides an integrated XML instance 
document validator.
Tibco TurboXML is an IDE for developing and managing XML 
assets.  It provides support for creating, validating, converting, 
and managing XML schemas, XML files, and DTDs.



17

XML Supporting Technologies:XML Supporting Technologies:
XML Java ParsersXML Java Parsers

Parsers allow you to read in XML documents.  Provide access to 
information stored in XML documents.
There are three general categories of parsers:

– All-in-Memory Parsers – load the entire XML document into memory and 
provide a tree-like view of the document.  As a result, the entire document 
must be processed before you can access any piece of the document at all.

– Push Parsers – hide the interaction with the actual document and “push” 
the tokens to user through callback methods.  Reads the XML stream, and 
when it encounters an element (or entity, etc.), it generates an event.  It is 
up to the application to handle those events, usually via a callback or an 
event handler class.

• SAX
• DOM

– Pull Parsers – the application developer is responsible for the parsing loop, 
pulling elements (or entities, etc.) out of the XML stream explicitly.

Currently, the two most widespread parsers are DOM and SAX.



18

XML Java Parsers: XML Java Parsers: 
Document Object Model (DOM)Document Object Model (DOM)

The Document Object Model (DOM) API is associated with all-in-memory parsers.
DOM is more than just a parsing technology; it is a generic document object model.
DOM can read in an XML stream, can optionally validate it against a schema or DTD, and 
when it’s done parsing, it provides a tree view of the document.
DOM provides access to the information stored in an XML document as a hierarchical object 
model.  DOM creates a tree of nodes (based on the structure and information in the XML 
document) and provide access to the information by interacting with the tree of nodes.
In DOM, each element corresponds to a node in the tree.  Using DOM, developers can 
manipulate the document in any number of ways, including addition, modification, and 
removal of nodes and text content.
A DOM instance can also be serialized to an XML stream.
There is a great deal of overhead to using DOM, and for very large documents that can be a 
big problem.  For each element, there must be a corresponding node instance in memory, 
as well as a collection to hold any attributes that the node may contain.  DOM stores 
everything, including attribute values, as a string.  Thus, if you have Boolean or numerical 
attributes, DOM wastes space storing them as strings.
DOM will usually be outperformed by a streaming parser, because most DOM 
implementations are now built on top of a streaming parser.
The last major performance issues it the overhead of creating and maintaining the tree 
structure that makes DOM so useful in the first place.



19

XML Java Parsers: XML Java Parsers: 
Simple API for XML (SAX)Simple API for XML (SAX)

Simple API for XML (SAX) Parser
The SAX API is associated with push parsers.
SAX allows users to define a set of handler objects through which it notifies you 
when interesting events occur during the sequential  parsing of a document.
Since it is forward-only, SAX is not particularly resource intensive. 
Since SAX basically just reads XML content from a stream and then passes that 
content on to the application through the event handler interfaces, SAX 
implementations generally have very little overhead, which in turn usually leads 
to good parsing performance.
If it is not implemented properly, the event-handling code for dealing with 
complex or deeply nested documents can become very convoluted and difficult 
to read and maintain.  
SAX doesn’t define an object model of its own.  Therefore, in most cases the 
developer will have to define their own data structures to store the data.
Once the SAX implementation has commenced the parsing process, the only 
way to terminate the process is to throw an exception, which is less than ideal.



20

XML Supporting Technologies:XML Supporting Technologies:
XSLTXSLT

XSLT provides developers with a higher-level 
language to access and transform XML 
streams.  There are two methods for 
implementing XSLT:
– Push – The stylesheet provides rules for mapping 

input streams to target streams.  Rules are set up 
for each element that will be encountered and 
“Pushed” through the transformation.

– Pull – The stylesheet provides rules for how 
elements are pulled out of a source stream, put 
into the target stream.



21

XML Supporting Technologies:XML Supporting Technologies:
XQueryXQuery

XQuery enables users to query and extract data from 
an XML document.  It is an extension of XPath, but 
has manipulation capabilities rather than being just a 
lookup.
XML is increasingly being used to model and store 
structured, semi-structured and relational data, and 
XQuery provides a powerful mechanism to access 
and manipulate the data stored in XML documents.
For additional information refer to:
http://www.w3.org/TR/xquery/



22

XML Supporting Technologies:XML Supporting Technologies:
XPathXPath

XPath is a non-XML language used to identify 
parts of XML documents.  It does this by 
viewing the hierarchical structure of an XML 
document as a tree of nodes and returns 
results based on the position of a node, its 
type or content.
XSLT and XPointer use XPath.
For additional information refer to:
http://www.w3.org/TR/xquery/



23

XML Supporting Technologies:XML Supporting Technologies:
XLinkXLink

XLink allows elements to be inserted into 
XML documents in order to create and 
describe links between resources.  
There are two types of links – simple and 
extended.  
– Simple links are identical to HTML links enabling 

the linking to other HTML and XML documents.  
– Extending links allow two-way linking between a 

group of documents and menu capabilities.
For additional information refer to:
http://www.w3.org/TR/xlink/



24

XML ReferencesXML References

Additional information on XML can be found in 
the following references:
www.w3c.org
www.ebxml.org
www.oasis-open.org
www.xml.com
XML Journal <http://sys-con.com/xml/>
www.xfront.com



25

Questions?Questions?

We appreciate your feedback and 
comments.  We can be reached at:

Name: Holly A. Hyland
Phone: 202-377-3710
Email: Holly.Hyland@ed.gov

Name: Andrew Smalera
Phone: 202-962-0789
Email: Andrew.Smalera@accenture.com


